概率是初中数学的常考知识点,但考题难度不大。今天我们就通过了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率。由浅入深,层层递进,利用所学知识解决问题。概率的意义与表示方法一般地,在大量重复试验中,如果事件 A 发生的频率会稳定在某个常数 p 附近,那么这个常数 p 就叫做事件 A 的概率。事件和概率的表示方法一般地,事件用英文大写字母 A,B,C, …,表示事件 A 的概率 p,可记为 P(A)=P。确定事件和随机事件的概率关系确定事件概率(1)当 A 是必然发生的事件时,P(A)=1(2)当 A 是不可能发生的事件时,P(A)=0确定事件和随机事件的概率之间的关系
![]()
古典概型古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型古典概型的概率的求法一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m中结果,那么事件 A发生的概率为列表法求概率列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。列表法的应用场合当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。树状图法求概率树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。利用频率估计概率利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。模拟实验在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。常见考法(1)判断哪些事件是必然事件,哪些是不可能事件;(2)直接求某个事件的概率。误区提醒对一个不确定事件所有等可能出现的结果数做了重复计算或漏算。