所有栏目

不同平面坐标系统间常采用相似变换,其变换一般需要转换参数,求解转换参数的个数以及至少需要公共点坐标的个数是()。

作者:注册测绘师考试

不同平面坐标系统间常采用相似变换,其变换一般需要转换参数,求解转换参数的个数以及至少需要公共点坐标的个数是()。

A 、4,2

B 、4,4

C 、3,3

D 、2,2

参考答案

【正确答案:A】

平面坐标系统的相似变换需要,m(尺度参数),a(旋转角)四个参数。而需要两个公共点坐标就可以求解四个参数。

简述不同空间直角坐标系之间坐标转换过程?

欧勒角:

不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。

三参数法:

三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。

坐标转换多项式回归模型:

坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。

两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

年北京坐标系与西安坐标系的转换方法

在矿业权实地核查准备工作阶段,收集到的地质、测绘等相关资料、图件和矿业权登记数据中,所涉及的地理数据可能是不同大地坐标系下的坐标数据。从实际情况来看,矿业权拐点坐标大多采用的是1954年北京坐标系,矿区已有的测量控制点和测量资料多数采用的也是1954年北京坐标系。本次矿业权实地核查测量工作采用的是1980西安坐标系,在实地测量和数据整理中涉及1954年北京坐标系与1980西安坐标系的转换。下面简要介绍二者之间转换的理论与方法。

(一)高斯投影正算和反算

将大地坐标换算为平面直角坐标,叫做高斯投影正算,是在同一椭球中进行,不存在误差。其常用量定义和公式如下:

a为椭球长半轴

b为椭球短半轴

f为椭球扁率

e为第一偏心率

e'为第二偏心率

全国矿业权实地核查技术方法指南研究

B为纬度,单位为弧度

全国矿业权实地核查技术方法指南研究

M为子午圈曲率半径

N为卯酉圈曲率半径

子午线弧长X

设有子午线上两点p1和p2,p1在赤道上,p2的纬度为B,p1、p2间的子午线弧长X计算公式:

全国矿业权实地核查技术方法指南研究

例如,1980西安坐标系a=6378140,e2=0.006694385,A'=1.005052506,B'=0.002531556209,C'=2.656901555E-06,D'=3.470075599E-09,E'=4.916542167E-12,F '=7.263137253E-15,G'=1.074009912E-17以B=30°弧度值0.5235987756为例,在Y=0时算得X=3320114.946。

当Y≠0,l≠0时则需要采用下列积分和逐次趋近的方法。

(1)高斯正算公式(利用点的经纬度计算XY坐标)

全国矿业权实地核查技术方法指南研究

(2)高斯反算公式(利用点的XY坐标计算经纬度)

全国矿业权实地核查技术方法指南研究

(3)底点纬度Bf迭代公式

全国矿业权实地核查技术方法指南研究

直到Bi-1-Bi小于某一个指定数值,即可停止迭代。

式中

全国矿业权实地核查技术方法指南研究

国家测绘局经过改进,将7个系数改为5个算出各椭球的值,采用公式如下:

(1)高斯投影正算(B,L→x,y)

全国矿业权实地核查技术方法指南研究

式中:X0=C0B-cosB(C1sinB+C2sin2B+C2sin5B+C4sin7B)

m0=lcosB

l=L-中央子午线经度值(弧度)

L,B为该点的经纬度值。

全国矿业权实地核查技术方法指南研究

式中:t=tanB,η2=e'2cos2B,

C,C0,C1,C2,C3,C4,e2为椭球常数

(2)高斯投影反算(x,y→B,L)

全国矿业权实地核查技术方法指南研究

式中:t=tanBf,η2=e'2cos2Bf, ,K1K2,K3,K4为椭球常数。

各坐标系椭球常数如表4-1。

表4-1 各大地坐标系椭球常数

国家测绘局采用的公式编程更加容易,高斯投影的正算、反算因为是在同一椭球下进行,公式是严密的,不存在误差,电算操作非常方便。现在网上很多软件有这种功能。度、分、秒输入使用小数形式,小数点前面是度,小数点后前两位为分,后两位为秒,再后面为秒的十进制小数。如25.23451124其值为25°23′45.1124″,正反算已经成了非常简单的事。高斯正算、反算必须考虑到椭球参数,椭球不同结果是不同的。必须考虑到中央子午线位置。因为各带中都有重复点,本次实地核查要求使用3度带,所有Y坐标必须带有3°带的带号,不允许使用独立坐标系或假定坐标系。

(二)参心坐标与空间直角坐标的关系

空间直角坐标X、Y、Z与大地坐标B、L、H间的关系表示如下:

全国矿业权实地核查技术方法指南研究

大地坐标B、L、H 与空间直角坐标X、Y、Z间的关系表示如下:

全国矿业权实地核查技术方法指南研究

式中

在转换中对于不知道椭球高的控制点可将控制点的大地高置为0,放在椭球面上计算,三维就变成二维,其效果更好。

(三)坐标系统转换

1954年北京坐标系与1980西安坐标系的转换通常有两种方法:四参数转换法和七参数转换法。

1.四参数转换法

所谓四参数转换是两个平移参数,一个旋转参数,一个尺度比。不考虑什么椭球,在小范围内按平面坐标直接平移、旋转、缩放。最少条件是两个公共点,多公共点时可以使用最小二乘法,删除残差大的点。这在区域面积小的情况下是可以的,一般不宜超过40平方千米。四参数转换模型如下:

x2=Δx+x1(1+m)cosa-y(1+m)sina

y2=Δx+x1(1+m)sina-y(1+m)cosa

2.七参数转换法

该方法适用于椭球间的坐标转换。其实质是原椭球空间直角坐标(X1,Y1,Z1)与新椭球空间直角坐标(X2,Y2,Z2)间的转换。椭球间的坐标转换至少需要3个公共点,解算七参数。转换公式采用的是布尔莎公式,法方程的解算采用高斯消元法。高斯消元法,是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。高斯消元法可以用在电脑中来解决数千条等式及未知数。迭代法较消元法的残差大。

椭球间的坐标转换适用基于椭球的参心(地心)坐标系间的转换,而不适用于基于平面的独立坐标系间以及独立坐标系和参心(地心)坐标系间的转换。基于椭球的坐标转换中(七参数),椭球→椭球的转换实际上是在空间直角坐标系中完成的。完整的变换过程如下(以“平面→平面”为例):(x1,y1,H1)→(B1,L1,H1)→(X1,Y1,Z1)→(X2,Y2,Z2)→(B2,L2,H2)→(x2,y2,H2)。首先把直角坐标系下的直角坐标,原公共点中的1954年北京坐标转换成2000国家大地经纬度坐标,再转换为1954年北京坐标系的参心坐标,公共点的1980西安坐标做同样转换。利用两个椭球的参心(地心)坐标求得转换参数,利用该参数直接将1954年北京坐标系下的坐标转换成1980西安坐标系下的坐标。在上述过程中,高程H1、H2是大地高(椭球高)。大地高=正常高+测区高程异常。如果不需要转换高程的话,可以将高程和高程异常全部置为0。不可将1954年北京坐标系坐标所带的正常高直接代入。

七参数的转换模型如下:

(1)七参数转换模型

全国矿业权实地核查技术方法指南研究

式中:ΔB,ΔL为同一点位在两个坐标系下的纬度差、经度差(弧度);

a,Δf为椭球长半轴差(米)、扁率差(无量纲);

X,ΔY,ΔZ为平移参数(米);

εx,εy,εz为旋转参数(弧度);

m为尺度参数(无量纲)。

最少3个公共点可以解求出七个参数。

(2)三维七参数转换模型

全国矿业权实地核查技术方法指南研究

全国矿业权实地核查技术方法指南研究

式中:ΔB,ΔL,ΔH为同一点位在两个坐标系下的纬度差(弧度)、经度差(弧度)、大地高差(米);

ρ为一个弧度的秒值,180×3600/π弧度/秒;

a为椭球长半轴差(米);

f为扁率差(无量纲);

X,ΔY,ΔZ为平移参数(米);

εx,εy,εz为旋转参数(弧度);

m为尺度参数(无量纲)。

最少3个公共点可以解求出七个参数。

七参数适用于整个测区的转换,面积小于2000平方千米的可以一次转换完成,面积大的可以分区转换,各分区之间应选公共点,以保证数据的接边精度。关于残差,国家规定以1∶2000图为例,残差为图上0.1毫米即实地20厘米,超过3倍中误差的点删除。为了保证矿业权矿界拐点转化的精度,本次矿业权实地核查规定残差超过实地0.1米一般不宜使用,实际上比国家规定的精度严,相当于国家规定的1/6。

(四)利用坐标转换软件进行坐标转换

以上介绍了1954年北京坐标系和1980西安坐标系转换的理论,在实际转换时可以采用相关的软件来完成。目前,市场上有多种坐标转换软件可供选择。在选择软件时,应注意部分软件转换的精度可能达不到本次矿业权实地核查的要求。下面以经天测绘技术公司开发的测量计算工具包软件V4.05为例,介绍坐标转换方法。

该软件界面如图4-3。该软件可以进行高斯正算、高斯反算、坐标换带、椭球间的转换,可以批量导入,可以保存数据、保存公共点,包括了坐标转换所需的相关计算功能。另外,该软件还能实现2000国家大地坐标系与1954年北京坐标系、1980西安坐标系、WGS-84坐标系以及独立坐标系的转换。

图4-3 经天测绘技术公司开发的测量计算工具包软件界面

坐标系统变换,可以采用平面坐标转换中的多公共点相似变换和椭球坐标转换。小面积可以采用多公共点相似变换。限制在400平方千米左右,不超过1 幅1∶50000图。它与中央子午线无关、高程需要置为0,计算参数的输入文件为文本文件,格式为:

点号,原X 坐标,原Y坐标,新X 坐标,新Y坐标

需要转换的输入文件格式为:

点号,原X 坐标,原Y坐标

参数计算点数不超过30个,文件可以导入,公共点可以保存,参数也可以保存。转换坐标可以导入,转换后的坐标可以保存。需要注意的是,转换坐标的位数与计算参数的坐标位数应一致。计算参数不使用带号,转换后坐标也没有带号。图4-4中的算例X舍去前4位,Y舍去前3位。

图4-4 多公共点平面相似变换窗口

面积较大的测区应使用7参数转换。在椭球间坐标转换开关下,有平面-平面、大地-平面、平面-大地、大地-大地4个子开关。对于采矿权,可使用平面-平面;对于探矿权,使用大地-大地,小数后位数较多,根据需要可将尾部删去。输入文件的格式与上述相同,需要输入中央子午线,Y坐标不加带号,在不知道1954年北京坐标、1980西安坐标的椭球高的情况下,可在高程栏输入0,测区高程异常输入0,探矿权是大地坐标格式,小数点前3位为°,后2位为′,3、4位为″,后面为十进制的秒的小数,如108°33′15″8563,输入108.33158563,由于控制点坐标是X、Y格式,可用高斯投影反算将控制点变为大地坐标格式。或是使用高斯坐标正算把探矿权登记坐标转换为直角坐标,计算完成后再使用高斯坐标反算将1980西安坐标转换为2000国家坐标。图4-5表示一个县的采矿权转换过程,Y坐标略去了前3位数。

图4-5 椭球间平面坐标转换窗口

需要注意的是,该软件没有采用软件狗加密,但需要注册才能用,采用机器码注册,一个软件只能装一台计算机专用。

空间坐标转换问题,懂一点空间几何的人都来帮帮我吧?

工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:

1、大地坐标(BLH)对平面直角坐标(XYZ);

2、北京54全国80及WGS84坐标系的相互转换;

3、任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下:

1,大地坐标(BLH)对平面直角坐标(XYZ)

常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。

另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。

确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。

2,北京54全国80及WGS84坐标系的相互转换

这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。

3,任意两空间坐标系的转换

由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式

对该公式进行变换等价得到:

解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算:

其中: V 为残差矩阵

X 为未知七参数

A 为系数矩阵

解之:L 为闭合差

解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。 但是要想GPS观测成果用于工程或者测绘,还需要将地方直角坐标转换为大地坐标,最后还要转换为平面高斯坐标。

上述方法类同于我们的间接平差,解算起来较复杂,以下提供坐标转换程序,只需输入三个已知点的坐标即可求解出坐标转换的七个参数。如果已知点的数量较多,可以进行参数间的平差运算,则精度更高。

当已知点的数量只有两个时,我们可以采用简单变换法,此法较为方便易行,适于手算,只是精度受到一定的限制。

详细解算方程如下:

式中调x,y和x'、y'分别为新旧(或;旧新)网重合点的坐标,a、b、、k为变换参数,显然要解算出a、b、、k,必须至少有两个重合点,列出四个方程。

即可进行通常的参数平差,解求a、x、b、c、d各参数值。将之代人(3)式,可得各拟合点的残差(改正数)代人(2)式,可得待换点的坐标。

求出解算参数之后,可在Excel中,进行其余坐标的转换。

上次笔者用此法进行过80和54坐标的转换,由于当时没有多余的点可供验证和平差,所以转换精度不得而知,但转换之后各点的相对位置不变。估计,实际的转换误差应该是10m量级的。

还有一些情况是先将大地坐标转换 为直角坐标,然后进行相关转换

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学