所有栏目

面积为A2的空腔2与面积为A1的内包小凸物1之间的角系数为X2,1为(  )。

作者:设备监理师考试

面积为A2的空腔2与面积为A1的内包小凸物1之间的角系数为X2,1为()。

A、1

B、A1/A2

C、A2/A1

D、2A1/A2

参考答案

【正确答案:B】

根据角系数互换性,

角系数怎么看非凹表面

角系数看非凹表面:这要看这两个互相垂直的长方形之间的面积以及距离之间的具体关系。只有根据这些条件才能够求出它们的角度关系。

角系数其实是一个百分数,是表面1发出的辐射能落到表面2的百分数称为表面1对表面2的角系数。记X12,反之表面2对表面1角系数X21.表面1、2的面积为A1、A2的话,就有X12*A1=X21*A2。

种类

角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、零角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

九年级数学上第一次月考试卷

   一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确).

1.一元二次方程(x﹣4)2=2x﹣3化为一般式是()

A.x2﹣10x+13=0 B.x2﹣10x+19=0 C.x2﹣6x+13=0 D.x2﹣6x+19=0

2.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()

A.1 B.﹣1 C.0 D.无法确定

3.方程x(x+3)=x+3的解为()

A.x1=0,x2=﹣3 B.x1=1,x2=﹣3 C.x1=0,x2=3 D.x1=1,x2=3

4.用配方法解一元二次方程x2﹣6x﹣7=0,则方程变形为()

A.2=43 C.2=16

5.将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是()

A.y=(x+1)2﹣2 B.y=(x﹣1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2+2

6.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如下,则a的值为()

A.﹣2 B.﹣ C.1 D.

7.抛物线y=x2﹣6x+5的顶点位于()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

8.如图,抛物线y=﹣x2﹣4x+c(c<0)与x轴交于点A和点B(n,0),点A在点B的左侧,则AB的长是()

A.4﹣2n B.4+2n C.8﹣2n D.8+2n

二、填空题(本题共8小题,每小题3分,共24分)

9.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是.

10.已知一元二次方程x2+px+3=0的一个根为﹣3,则p=.

11.已知三角形的两边长分别是4和7,第三边是方程x2﹣16x+55=0的根,则第三边长是.

12.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为.

13.抛物线y=2x2﹣5x+1与x轴的公共点的个数是.

14.二次函数y=x2﹣2x的图象上有A(x1,y1)、B(x2,y2)两点,若1

15.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为.

16.如图,已知直线y=﹣ x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣ x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣ x+3于点Q,则当PQ=BQ时,a的值是.

   三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)

17.解方程:2x2﹣4x﹣5=0(用公式法)

18.一个直角三角形的两条直角边的和是14cm,面积为24cm2,求两条直角边的长.

19.某工厂在两年内机床年产量由400台提高到900台,求机床产量的年平均增长率.

20.一个二次函数的图象经过(﹣2,5),(2,﹣3),(4,5)三点.

(1)求这个二次函数的解析式

(2)写出这个二次函数图象的开口方向、对称轴和顶点坐标

(3)写出这个二次函数图象的与坐标轴的交点坐标.

四、解答题(本题共6小题,其中21、22题各9分,23题10分,共28分)

21.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).

(1)求m的值和抛物线的解析式

(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)

22.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:

(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?

(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价﹣进价)

23.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.

(1)求抛物线的解析式

(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.

24.某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现润滑用油量每减少1千克,用油量的重复利用率增加1.6%,这样加工一台大型机械设备的实际耗油量下降到12千克,问技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?

25.如图,抛物线y= x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标

(2)判断△ABC的形状,证明你的结论

(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

26.如图,在平面直角坐标系中,O是坐标原点,矩形OABC的顶点A( ,0),C(0,1),∠AOC=30°,将△AOC沿AC翻折得△APC.

(1)求点P的坐标

(2)若抛物线y=﹣ x2+bx+c经过P、A两点,试判断点C是否在该抛物线上,并说明理由

(3)设(2)中的抛物线与矩形0ABC的边BC交于点D,与x交于另一点E,点M在x轴上运动,N在y轴上运动,若以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.

参考答案与试题解析

一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确).

1.一元二次方程(x﹣4)2=2x﹣3化为一般式是()

A.x2﹣10x+13=0 B.x2﹣10x+19=0 C.x2﹣6x+13=0 D.x2﹣6x+19=0

【考点】一元二次方程的一般形式.

【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的相乘,再移项使方程右边变为0,然后合并同类项即可.

【解答】解:(x﹣4)2=2x﹣3,

移项去括号得:x2﹣8x+16﹣2x+3=0,

整理可得:x2﹣10x+19=0,

故一元二次方程(x﹣4)2=2x﹣3化为一般式是:x2﹣10x+19=0.

故选B.

【点评】此题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键.

2.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()

A.1 B.﹣1 C.0 D.无法确定

【考点】一元二次方程的解一元二次方程的定义.

【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.

【解答】解:根据题意得:(m﹣1)+1+1=0,

解得:m=﹣1.

故选B.

【点评】本题主要考查了方程的解的定义,正确理解定义是关键.

3.方程x(x+3)=x+3的解为()

A.x1=0,x2=﹣3 B.x1=1,x2=﹣3 C.x1=0,x2=3 D.x1=1,x2=3

【考点】解一元二次方程-因式分解法.

【专题】计算题.

【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.

【解答】解:方程x(x+3)=x+3,

变形得:x(x+3)﹣(x+3)=0,即(x﹣1)(x+3)=0,

解得:x1=1,x2=﹣3.

故选B

【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.

4.用配方法解一元二次方程x2﹣6x﹣7=0,则方程变形为()

A.2=43 C.2=16

【考点】解一元二次方程-配方法.

【专题】配方法.

【分析】首先进行移项变形成x2﹣6x=7,两边同时加上9,则左边是一个完全平方式,右边是一个常数,即可完成配方.

【解答】解:∵x2﹣6x﹣7=0,

∴x2﹣6x=7,

∴x2﹣6x+9=7+9,

∴(x﹣3)2=16.

故选C.

【点评】配方法的一般步骤:

(1)把常数项移到等号的右边

(2)把二次项的系数化为1

(3)等式两边同时加上一次项系数一半的平方.

选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.

5.将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是()

A.y=(x+1)2﹣2 B.y=(x﹣1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2+2

【考点】二次函数图象与几何变换.

【分析】根据“左加右减,上加下减”平移规律写出平移后抛物线的解析式即可.

【解答】解:抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是:y=(x+1)2﹣2.

故选:A.

【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.

6.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如下,则a的值为()

A.﹣2 B.﹣ C.1 D.

【考点】二次函数图象与系数的关系.

【专题】压轴题.

【分析】由抛物线与y轴的交点判断c与0的关系,进而得出a2﹣2的值,然后求出a值,再根据开口方向选择正确答案.

【解答】解:由图象可知:抛物线与y轴的交于原点,

所以,a2﹣2=0,解得a=± ,

由抛物线的开口向上

所以a>0,

∴a=﹣ 舍去,即a= .

故选D.

【点评】二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

7.抛物线y=x2﹣6x+5的顶点位于()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

【考点】二次函数的性质.

【分析】利用配方法把抛物线的一般式写成顶点式,求顶点坐标或者用顶点坐标公式求解.

【解答】解:∵y=x2﹣6x+5

=x2﹣6x+9﹣9+5

=(x﹣3)2﹣4,

∴抛物线y=x2﹣6x+5的顶点坐标是(3,﹣4),在第四象限.

故选:D.

【点评】此题考查了二次函数的性质,利用配方法求顶点坐标是常用的一种方法.

8.如图,抛物线y=﹣x2﹣4x+c(c<0)与x轴交于点A和点B(n,0),点A在点B的左侧,则AB的长是()

A.4﹣2n B.4+2n C.8﹣2n D.8+2n

【考点】抛物线与x轴的交点.

【分析】利用根与系数的关系可得:x1+x2=﹣4,x1x2=﹣c,所以(x1﹣x2)2=(x1+x2)2﹣4x1x2=16+4c,AB的长度即两个根的差的绝对值,利用以上条件代入化简即可得到AB的长.

【解答】解:设方程0=﹣x2﹣4x+c的两个根为x1和x2,

∴x1+x2=﹣4,x1x2=﹣c,

∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16+4c,

∵AB的长度即两个根的差的绝对值,即: ,

又∵x2=n,

∴把x2=n代入方程有:c=n2+4n,

∴16+4c=16+16n+4n2=4(n+2)2,

∴ =2n+4,

故选B.

【点评】本题主要考查了二次函数的性质,一元二次方程根与系数的关系以及二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.

二、填空题(本题共8小题,每小题3分,共24分)

9.已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是 m≤1 .

【考点】根的判别式.

【专题】探究型.

【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可.

【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,

∵方程有实数根,

∴△=22﹣4m≥0,解得m≤1.

故答案为:m≤1.

【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不等式是解答此题的关键.

10.已知一元二次方程x2+px+3=0的一个根为﹣3,则p= 4 .

【考点】一元二次方程的解.

【分析】已知一元二次方程x2+px+3=0的一个根为﹣3,因而把x=﹣3代入方程即可求得p的值.

【解答】解:把x=﹣3代入方程可得:(﹣3)2﹣3p+3=0,

解得p=4

故填:4.

【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.

11.已知三角形的两边长分别是4和7,第三边是方程x2﹣16x+55=0的根,则第三边长是 5 .

【考点】解一元二次方程-因式分解法三角形三边关系.

【专题】计算题.

【分析】利用因式分解法解方程得到x1=5,x2=11,然后利用三角形三边的关系即可得到第三边为5.

【解答】解:x2﹣16x+55=0,

(x﹣5)(x﹣11)=0,

所以x1=5,x2=11,

又因为三角形的两边长分别是4和7,所以第三边为5.

故答案为5.

【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.

12.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为  x(x﹣1)=4×7 .

【考点】由实际问题抽象出一元二次方程.

【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.

【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,

所以可列方程为: x(x﹣1)=4×7.

故答案为: x(x﹣1)=4×7.

【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.

13.抛物线y=2x2﹣5x+1与x轴的公共点的个数是 两个 .

【考点】抛物线与x轴的交点.

【分析】抛物线与x的交点个数,即为抛物线y=2x2﹣5x+1与x轴的公共点的个数,因此只要算出b2﹣4ac的值就可以判断出与x轴的交点个数.

【解答】解:∵y=2x2﹣5x+1,

∴b2﹣4ac=(﹣5)2﹣4×2×1=17>0.

∴抛物线y=2x2﹣5x+1与x轴有两个交点.

即:抛物线y=2x2﹣5x+1与x轴的公共点的个数是两个.

故答案为:两个.

【点评】本题考查二次函数与x轴的交点问题,关键是算出二次函数中b2﹣4ac的值.

14.二次函数y=x2﹣2x的图象上有A(x1,y1)、B(x2,y2)两点,若1

【考点】二次函数图象与几何变换.

【分析】先根据函数解析式确定出对称轴为直线x=1,再根据二次函数的增减性,x<1时,y随x的增大而减小解答.

【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,

∴二次函数图象的对称轴为直线x=1,

∵1

∴y1

故答案为:y1

【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键.

.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x

根据相似三角形的判定原理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的面积公式计算三个正方形的面积,从中找出规律

解:设正方形的面积分别为S0,S1,S2…S2010,

根据题意,得:AD‖BC‖C1A2‖C2B2,

∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).

∵∠ABA1=∠A1B1=∠B2A2x=90°,

∴△BAA1∽△B1A1A2,

在直角△ADO中,根据勾股定理,得:AD=√ 5

cot∠DAO=OA/OD=1/2

∵tan∠BAA1=BA1/AB=cot∠DAO,

∴BA1=1/2AB=√ 5/2

∴CA1=√ 5+√ 5/2*(1+1/2)

同理,得:C1A2= √ 5/2*(1+1/2)*(1+1/2)

由正方形的面积公式,得:S0= √ 5^ 2*(1+1/2)^ 2

S2=√ 5^ 2*(1+1/2)*(1+1/2)^ 2

由此,可得Sn= √ 5^ 2*(1+1/2)^ 2(n-1)

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学