在双层平壁无内热源常物性一维稳态导热计算过程中,如果已知平壁的厚度和热导率分别为δ1、λ1、δ2和λ2,如果双层壁内、外侧温度分别为t1和t2,则计算双层壁交界面上温度tm错误的关系式是()。
A 、
B 、
C 、
D 、
【正确答案:D】
常物性无内热源一维稳态导热,热流密度是常数,热流密度等于温差与所对应的热阻之和的比值,根据本题已知条件可写成
2 传热学的基本知识2.1 稳定传热的基本概念摄氏温标为实用温标,又称百分温标,是工程实际中常用的一种温标。它是把在标准大气压下纯水开始结冰的温度(冰点)定为零度,把纯水沸腾时的温度(沸点)定为100度,将0与100之间的尺面分为100等份,每一等份就是1度。符号用t表示,单位为摄氏度,代号为℃。 摄氏温标的每1℃与热力学温标的每1K相同,两种温标的关系为: T = t + 273.16 ≈ t + 2732、热量 分子或其它粒子热运动的结果,使物体内部分子或其它粒子具有了动能,我们称之为热能,它和温度密切相关。物体吸收或放出热能的多少称为热量。两个冷热程度不同的物体放在一起,冷的物体会变热,热的物体会变冷,这是由于两物体进行了能量交换,热的物体放出了多少热量,冷的物体吸收了多少热量。热量是一个过程量,只有在物体通过热传递交换热能时才谈得上热量。在国际单位制中,热量的单位是焦尔(J),习惯常用的非法定计量单位以卡(cal)或千卡(kcal)表示,其换算关系为: 1J = 1 N ·m 1 W = 1J / s 1cal=4.1868J, 2.1.2 传热的基本方式热量的传递有三种基本方式:导热、热对流、热辐射。
(1)导热 是指物体各部分无相对位移或不同物体直接接触时依靠分子、原子及自由点子等微观粒子的热运动而进行的热量传递现象。导热是物质的属性。是热量传递的基本方式之一,这种传热方式的明显特点是,在传热过程中没有物质的迁移。导热过程可以在固体、液体及气体中发生,但在引力场下,单纯的导热一般只发生在密实的固体中,因为在有温差时,液体和气体中难以维持单纯的导热。
(2)热对流 依靠流体的运动,把热量由一处传递到另一处的现象,称为热对流。它是传热的另一种基本方式。这是流体所特有的一种传热方式。工程上大量遇到的是流体流过一个固体壁面时发生的热量交换过程,
一维稳态无源导热控制方程如下:[公式] 对于上述方程,利用有限体积法来进行离散求解。离散求解PED方程的步骤为:离散控制域(网格划分)在每一个控制体上离散控制方程插值得到界面值,完成单元离散方程组装单元控制方程,形成整体控制方程组(Ax=b)求解代数方程组(直接,迭代)得到离散场变量下面分别按照上面给出的六个步骤进行分析。
根据φ=-λA*(dt/dx)计算
其中φ为热流量,λ为导热系数,A为传热面积,dt表示微元厚度两面的的温差,dx表示微元厚度。
导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时,通过1平方米面积传递的热量,单位为瓦/米·度 (W/(m·K),此处为K可用℃代替)。
导热系数是建筑材料最重要的热湿物性参数之一,与建筑能耗、室内环境及很多其他热湿过程息息相关。
导热系数仅针对存在导热的传热形式,当存在其他形式的热传递形式时,如辐射、对流和传质等多种传热形式时的复合传热关系,该性质通常被称为表观导热系数、显性导热系数或有效导热系数。
此外,导热系数是针对均质材料而言的,实际情况下,还存在有多孔、多层、多结构、各向异性材料,此种材料获得的导热系数实际上是一种综合导热性能的表现,也称之为平均导热系数。
扩展资料:
不同物质导热系数各不相同;相同物质的导热系数与其的结构、密度、湿度、温度、压力等因素有关。同一物质的含水率低、温度较低时,导热系数较小。
一般来说,固体的热导率比液体的大,而液体的又要比气体的大。这种差异很大程度上是由于这两种状态分子间距不同所导致。现在工程计算上用的系数值都是由专门试验测定出来的。
随着温度的升高或含湿量的增大,所测5种典型建筑材料的导热系数都呈增大的趋势。下面从微观机理上对此加以分析。对多孔材料而言,当其受潮后,液态水会替代微孔中原有的空气。
而在常温常压下,液态水的导热系数(约为0.59W/(m·K))远大于空气的导热系数(约为0.026W/(m·K))。
因此,含湿材料的导热系数会大于干燥材料的导热系数,且含湿量越高,导热系数也越大。若在低温下水分凝结成冰,由于冰的导热系数高达2.2W/(m·K)),因此材料整体的导热系数也将增大。
与受潮带来的影响不同,温度升高会引起分子热运动的加快,促进固体骨架的导热及孔隙内流体的对流传热。此外,孔壁之间的辐射换热也会因为温度的升高而加强。
若材料含湿,则温度梯度还可能造成重要影响:温度梯度将形成蒸汽压梯度,使水蒸气从高温侧向低温侧迁移。
在特定条件下,水蒸气可能在低温侧发生冷凝,形成的液态水又将在毛细压力的驱动下从低温侧向高温侧迁移。如此循环往复,类似于热管的强化换热作用,使材料表现出来的导热系数明显增大。
参考资料来源:百度百科-导热系数