所有栏目

怎样成为数据科学家?

作者:专业解读

1、复习你的数学和统计技能

一个好的数据科学家必须能够理解数据告诉你的内容,做到这一点,你必须有扎实的基本线性代数,对算法和统计技能的理解。在某些特定场合可能需要高等数学,但这是一个好的开始场合。

2、了解机器学习的概念

机器学习是下一个新兴词,却和大数据有着千丝万缕的联系。机器学习使用人工智能算法将数据转化为价值,并且无需显式编程。

3、学习代码

数据科学家必须知道如何调整代码,以便告诉计算机如何分析数据。从一个开放源码的语言如Python那里开始吧。

4、了解数据库、数据池及分布式存储

数据存储在数据库、数据池或整个分布式网络中。以及如何建设这些数据的存储库取决于你如何访问、使用、并分析这些数据。如果当你建设你的数据存储时没有整体架构或者超前规划,那后续对你的影响将十分深远。

5、学习数据修改和数据清洗技术

数据修改是将原始数据到另一种更容易访问和分析的格式。数据清理有助于消除重复和坏”数据。两者都是数据科学家工具箱中的必备工具。

6、了解良好的数据可视化和报告的基本知识

你不必成为一个平面设计师,但你确实需要深谙如何创建数据报告,便于外行的人比如你的经理或CEO可以理解。

7、添加更多的工具到您的工具箱

一旦你掌握了以上技巧,是时候扩大你的数据科学工具箱了,包括Hadoop、R语言和Spark。这些工具的使用经验和知识将让你处于大量数据科学求职者之上。

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学